A Note on Fractional Sumudu Transform
نویسندگان
چکیده
منابع مشابه
A Note on Fractional Sumudu Transform
We propose a new definition of a fractional-order Sumudu transform for fractional differentiable functions. In the development of the definition we use fractional analysis based on the modified Riemann-Liouville derivative that we name the fractional Sumudu transform. We also established a relationship between fractional Laplace and Sumudu duality with complex inversion formula for fractional S...
متن کاملOn Sumudu Transform Method in Discrete Fractional Calculus
and Applied Analysis 3 2. Preliminaries on Time Scales A time scale T is an arbitrary nonempty closed subset of the real numbers R. The most wellknown examples are T R, T Z, and T q : {qn : n ∈ Z}⋃{0}, where q > 1. The forward and backward jump operators are defined by σ t : inf{s ∈ T : s > t}, ρ t : sup{s ∈ T : s < t}, 2.1 respectively, where inf ∅ : supT and sup ∅ : inf T. A point t ∈ T is sa...
متن کاملSome Remarks on the Fractional Sumudu Transform and Applications
In this work we study fractional order Sumudu transform. In the development of the definition we use fractional analysis based on the modified Riemann Liouville derivative, then we name the fractional Sumudu transform. We also establish a relationship between fractional Laplace and Sumudu via duality with complex inversion formula for fractional Sumudu transform and apply new definition to solv...
متن کاملNote on fractional Mellin transform and applications.
In this article, we define the fractional Mellin transform by using Riemann-Liouville fractional integral operator and Caputo fractional derivative of order [Formula: see text] and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2010
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2010/154189